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Based on the recently found closed-form expressions of the Boltzmann collision in- 
tegrals in a rigid-sphere gas for multi-Maxwellian distributions, a few typical sets of 
contour surfaces of the integrals in the space of molecular velocities are presented. 
These show graphically the tendency toward equilibrium under the influence of colli- 
sions. A brief preliminary comparison with Monte Carlo results is also given. 
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nonequilibrium in hard-sphere gases; numerical analysis of collision integrals; exact 
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1. I N T R O D U C T I O N  

I t  has recently been shown (1-3) that, when the distribution function in a gas is 
"multi-Maxwellian" (i.e., can be expressed as a linear combination of Maxwellians), 
the computation of the Boltzmann collision integrals becomes feasible, and indeed 
that, for a rigid-sphere gas, the results can be expressed in closed form. This provides 
us for the first time with some exact results in situations involving large departures 
f rom equilibrium. The difficulties involved in evaluating the collision integrals in 
general have encouraged, on the one hand the use of  outright hypotheses on their 
structure (as, e.g., in the well-known relaxation models), and on the other hand 
the development of purely numerical methods, especially Monte Carlo techniques. (~,5~' 
An assessment of the B G K  model based on these exact results has already been 
given. (a) The purpose of this note is to present some representative velocity-space 
contours of  the collision integrals for a Mott -Smith  bimodal distribution, with a view 
to illustrating graphically how collisions take a distribution toward equilibrium, 
and also to enable a direct comparison with the interesting computations made by 
the Monte Carlo group at Illinois, (5,6) which are the only other results available on 
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the collision integrals. A fairly extensive analysis of both random and systematic 
.errors in such Monte Carlo work has been undertaken over a period of years, m 
but it has had to rely on purely numerical methods. The present results could, 
we believe, provide a more direct basis for such investigations. 

2. THE  CLOSED-FORM EXPRESSIONS 

Details of the analysis leading to the closed-form expressions have been published 
elsewhere~l-z); we only mention here the final result. 

If  the distribution function can be expressed as a weighted sum of Maxwellians F i ,  

f -~ ~, viFi 
i 

Fi = ni(fii/~r) a/2 exp[--fli(v -- Ui) 2] (1) 

ni(fii/Tr)a/2 exp(--c~i z) 

where n~,/3~, and ui are the parameters in Fi ,  then the Boltzmann collision integrals 
can be written as 

a t ( f ,  f )  = ~, ~ v~v j j (F ,  , F,.) (2) 
i j 

For rigid spheres of diameter or, it has been shown that 

J ( F i ,  Fj) = (Trza~/fi~fi~) F,F~[(1/2R){crp(1 ; 1; Q + R)  - -  ~(1; �89 Q - R)} 

- -  2(/3i//3,) ~ (2 ;  }; off2)] (3) 

-where 

Q ~ l(Cffi2 q.. cgj2), R 2 _= .~(cgi2 _ cg~) _1_ [ cg i • c~j 12 

and the ~ represent confluent hypergeometric functions (see Ref. 3). Thus, the calcula- 
tion of J requires only the evaluation of the relevant hypergeometrie functions. 
A simple computer program has been written for doing this; high accuracy can 
easily be achieved (eight figures in the present work) using the well-known series 
representation for ~b when the argument is less than 10, and an asymptotic expansion 
when the argument is larger.(*) It must be emphasized that no numerical quadrature 
is necessary at any stage for computing the collision integrals for rigid spheres. 
(Work now in progress indicates, however, that, for other intermolecular force models, 
at least one numerical integration may be necessary.) 

3. RESULTS 

Using the program mentioned above, we have, for purposes of illustration, 
computed the collision integrals in a few different cases for a Mort-Smith type of 
distribution 

fo = (1 - -  v)F1 -t- vF2 (4) 

where F1 and F2 are the Maxwellian distributions corresponding to the equilibrium 
states of a monatomic gas respectively on the cold and hot sides of a normal shock. 
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Table  I. Intervals in Values o f  o f  tor  Fig. i ~ 

4.8  < A < 6 .0  x 1 0  - 2  

3.9 B 4 .8  x 10 -3 

3.1 C 3.9 • 10 -~ 

2 .0  D 2.5  • 10 -2 

0 .52  E 0 .65  • 1 0  - 2  

0 .27  F 0 .33 x 10 .3  

0 .75  G 1.1 • 10 -~ 

0 .22  H 0 .34  X 10 -3 

0.91 I 1.6 x 10 - s  

0 .86  d 1.6 • 1 0  - 6  

0.15  K 0 .27  x 10 -6 

- - 4 . 7  < a < - - 2 . 7  

- - 2 . 7  b - - 1 . 5  

- - 0 . 2 9  c - - 0 . 1 6  

- - 1 . 0  d - - 0 . 8 3  

- - 0 . 8 3  e - - 0 . 6 9  

- - 0 . 5 8  f - - 0 . 4 4  

- - 0 . 3 4  g - - 0 . 2 6  

- - 0 . 2 0  h - - 0 . 1 6  

- -  1.2 i - - 0 . 9 2  

- - 0 . 7 1  j - - 0 . 5 4  

- - 0 . 3 3  k - - 0 . 2 5  

- - 0 . 1 5  l - - 0 . 1 1  

- - 0 . 6 7  m - - 0 . 3 0  

- - 1 . 3  n - - 0 . 5 9  

- - 0 . 2 6  p - - 0 . 1 2  

- - 1 . 2  q - - 0 . 5 1  

- - 0 . 5 1  r - - 0 . 2 3  

- - 0 . 2 3  s - - 0 . 1 0  

- -  1.0 t - - 0 . 4 5  

- - 0 . 4 5  u - - 0 . 2 0  

- - 2 . 0  v - - 0 . 8 9  

- - 0 . 4  w - - 0 . 1 8  

a M o t t - S m i t h  d i s t r i b u t i o n  a t  M z  = 10.0,  v = 0 .5 .  V a l u e s  in  u n i t s  o f  n , /3 ,  a 2. 

x 10 .2  

X 10  -2  

X 10  -2  

• 10 -2 

x 10 -~ 
x 10 -3 

X 1 0  -3  

x 10 -3 

x 10 .3  

x 10 -~ 
x 10 -5 

x 10 -5 

•  6 

x 10 -6 

• 10 -6 

X 10 -7 

x 10 -7 

x 10 - s  

x 10 -8 

Table I I .  Intervals in Values of J for Fig. 2 ~ 

0 .96  < A < 1.1 x 10 -x 

0 .87  B 0 .96  • 10 -~ 

0 .57  C 0 .79  x 10 -z 

0 .29  D 0 .40  x 10 -~ 

0.11 E 0 .15  • 10 -z 

0 .27  F 0 .38  x 10 .2  

0 .12  G 0.18 • 10 -2 

0 .24  H 0 .36  x 10 -3 

0 .32  I 0 .47  • 10 -4 

0 .38 J 0 .67  • 10 -~ 

- - 2 . 0  < a < - - 1 . 4  

- - 1 . 4  b - - 0 . 9  

- - 0 . 6  c - - 0 . 4  

- - 1 . 8  d - - l . 2  x 10 -z 

- - 2 . 9  e - - 2 . 6  • 10 -2 

- - 2 . 6  f - - 2 . 4  x 10 -2 

- - 2 . 4  g - - 1 . 5  x 10 -2 

- - 1 . 5  h - - 0 . 9 4  x 10 -2 

- - 9 . 4  i - - 5 . 9  x 10 - s  

- - 3 . 7  j - - 2 . 3  x 10 -3 

- - 1 . 4  k - - 0 . 9  x 10 -3 

- - 5 . 6  1 - - 3 . 5  x 10 -4 

- - 1 . 4  m - - 0 . 8 5  x 10 -4 

- - 1 . 6  n - - 0 . 9 1  x 10 -5 

- - 0 . 3  p - - 0 . 1 7  x 10 -5 

- - 1 . 7  q - - 0 . 9 7  x 10 -~ 

- - 0 . 9 7  r - - 0 . 5 5  x 10 -6 

- - 0 . 5 5  s - - 0 . 2 8  x 10 -6 

- - 0 . 2 8  t - - 0 . 1 4  x 10 -6 

- - 1 . 4  u - - 0 . 6 9  • 10 .7  

- - 0 . 6 9  v - - 0 . 3 5  x 10 -7 

- - 0 . 8 7  w - - 0 . 4 3  • 10 .8  

- - 0 . 2 2  x - - 0 . 1 1  • 10 - s  

of  n, fl, d .  M o t t - S m i t h  d i s t r i b u t i o n  a t  M1 = 5.0,  v = 0 .5 .  V a l u e s  in  u n i t s  
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A 
B 
C 
D 
E 

Table I I I .  Values of J and Intervals for Fig.  3 ~ 

i 

0.09 a --0.6 
0.05 b --0.2 
10 -~ c --0.1 
10 -3 d --3.5 • 10 -~ 
10 -4 e --3.0 • 10 -~ 

f --2.0 • 10 -~ 
g --1.0 • 10 -~ 
h --0.5 • 10 -~' 
i --0.25 • 10 -2 
j --0.10 • 10 -~ 
k --5.0 X 10 -~ 
l --0.5 • 10 -~ 

--6.6 < m < --3.8 • 10 -6 
--1.2 n --0.7 • 10 -6 
--4.0 p --2.3 • 10 -7 
--2.3 q --1.3 • 10 -7 
--7.5 r --4.3 • 10 -s 
--8.0 s --4.5 • 10 -~ 
--3.0 t --1.7 • 10 -n  

i 

Mort-Smith distribution at Ma = 3.0, v = 0.5. Values in units of n,/3, ~2. 

The results are avai lable  in the  form of  tables ~ if  accurate  numer ica l  values are desired,  
but  are otherwise most  convenient ly  d isp layed in the fo rm of  contours  in veloci ty 
space, o f  the k ind  shown by Nords ieck  and Hicks/5~ Because o f  the symmet ry  o f  
the d is t r ibut ion  (4) abou t  the v~ axis (v~ being the componen t  o f  the molecular  

velocity a long the flow direct ion x), it  is enough in this case to show a sect ion o f  
the con tour  surfaces in v-space by  a p lane  th rough  the v~ axis (v~ being the no rma l  
coord ina te  in this plane).  Such contours  can effectively be p roduced  by  the compute r  
itself, i f  suitable fo rma t  ins t ruct ions  are  incorpora ted  in the p rog ram.  Figures  1 and  2 
show contours  ob ta ined  this way; the lines shown have been drawn in on the compute r  
sheets, jo in ing  p r in tou t  symbols  represent ing the same interval  o f  J .  The  labels on 
the curves s tand  for  intervals in values o f  j as shown in the Tables  I and  II .  

A l though  this me thod  o f  ob ta in ing  contours  is the  mos t  convenient ,  its accuracy 
is l imited by the number  o f  symbols  avai lable  on the pr in ter  and  certain o ther  s imilar  
considerat ions.  In  one case, we have used a more  accurate  " m a n u a l "  procedure ,  
in which the contours  have been d rawn by in te rpola t ing  a m o n g  the values o f  J 
compu ted  on a fine grid in velocity space. The  results ob ta ined  this way  are  shown 
as full lines in Fig. 3 (see Table  I I I  for  app rop r i a t e  values); the  dashed  lines in this 
d i ag ram have again been ob ta ined  direct ly f rom the computer .  

These d iagrams show vividly how coll isions tend to drive a system t o w a r d  
equil ibrium. Compar i son  with the cor responding  d is t r ibut ion  funct ion (whose shape 
at v~ - -  0 is d isplayed in the backg round  in all the three d iagrams)  shows tha t  in 

2 Available on request from the authors. 
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M1=3"0,  "12 = 0 .5  vn 

v~ 

Fig .  4. C o l l i s i o n  i n t eg ra l  c o n t o u r s  fo r  the  s a m e  d i s t r i b u t i o n  as in  Fig .  3, as  o b t a i n e d  f r o m  one  

M o n t e  C a r l o  r u n  (Yen,  p r i v a t e  c o m m u n i c a t i o n ) .  A v e r a g e  c o n t o u r  va lues ,  in  a r b i t r a r y  uni t s ,  a re  g i v e n  

in  T a b l e  IV. 

each case there is a loss of molecules ( J  < 0) from the supersonic "peak" (i.e., 
the region in velocity space around vx ~ ul, the gas velocity on the supersonic side of 
the shock), and also from the region corresponding roughly to vx < 0 (i.e., to 
molecules coming from the hot side). In between is a region where the gain pre- 
dominates ( J  > 0). The general tendency therefore is (as might be expected) to level 
down the peaks and fill up the valleys in the distribution. 

Recalling that the diagrams show a section of the contour surfaces in v-space, 
we can describe the results in greater detail as follows. There is a ball (or, more 
precisely, a spheroidal shape) roughly around the supersonic gas velocity on the 
cold side, in which the loss predominates ( J  < 0). This is surrounded by a region, 
contained within an oblate spheroidal shape, in which the gain predominates ( j  > 0). 
Between these two surfaces (marked Z in the diagrams), j attains a maximum value 
on some ring (within the surface marked A). Beyond the second spheroid Z, J is 
again negative and eventually approaches zero at large velocities. 

Table IV. Average Contour Values (in arbitrary units) for Fig. 4 

A 175 x 10 -5 a - -1000  x 10 -5 

B 130 x 10 -5 b - - 5 0 0  X 10 5 

C 100 x 10 -5 c - - 2 0 0  x 10 -5 
D 50 X 10 -5 d - 5 0  x 10 -5 

E 10 X 10 -5 e - -25  • 10 -5 

F 3 X 10 -5 f - - 1 0  x 10 -~ 
G 1 x 10 -~ g - - 6  X 10 -5 

h - - 2  x 10 -5 

i 0 
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To enable a compar i son  with M o n t e  Car lo  results, we reproduce  the contours  
ob ta ined  by Yen in Fig. 4 (see Table  IV for  app rop r i a t e  values), which can be 
direct ly c o m p a r e d  with Fig. 3, as bo th  computa t ions  are  for  the same dis t r ibut ion.  3 
I t  is interest ing tha t  many  o f  the gross features  o f  J are reasonably  well d isplayed 
by the M o n t e  Car lo  results. A detai led numer ica l  compar i son  is not  immedia te ly  
possible,  because the normal iza t ion  used in the M o n t e  Car lo  results is not  accurate ly  
known.  However ,  even a cursory  compar i son  reveals certain qual i tat ive features 
which may  need improvemen t  in the M o n t e  Car lo  results. We  may  ment ion  the shape 
o f  the zero lines (Z  in our  diagrams),  the slope o f  the contours  as they come in 
toward  the vx axis, and  the presence o f  saddle points  at  large velocities. 
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